Blind Source Separation of Sources with Different Magnitudes

J.-P. Nadal', E. Korutcheva®? and F. Aires?
! Laboratoire de Physique Statistique de I’ENS*,
Ecole Normale Supéricure,
24, rue Lhomond - 75231 Paris Cedex 05, France
2 Departamento de Fisica Fundamental,
Universidad Nacional de Educacién a Distancia (UNED),
¢/Senda del Rey s/n - 28080 Madrid, Spain'
3NASA/ Goddard Institute for Space Studies,
2880 Broadway, New York, NY 10025, USA

*Laboratoire associé au CNRS, & 'ENS et aux Universités Paris 6 et Paris 7.
'Permanent address: G.Nadjakov Inst. Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria



Abstract- We investigate the information processing
of a linear mixture of independent sources of different
magnitudes when a number m of the sources can be
considered as “strong” as compared to the other ones,
the “weak” sources. We find that it is preferable to
perform blind source separation in the space spanned
by the strong sources, first projecting the signal onto
the m largest principal components. We illustrate the
analytical results with numerical simulations on real
data.

I. INTRODUCTION

During the recent years many studies have been de-
voted to the study of Blind Source Separation (BSS)
and more generally of Independent Component Analy-
sis (ICA) (see e.g.”®%?). Within the standard frame-
work one assumes a multidimensional measured signal to
result from a linear mixture of statistically independent
components, or “sources”. In most cases one makes the
optimistic hypotheses that the number of sources is equal
to the dimension of the signal (the number of captors),
and that the unknown mixture matrix is invertible. The
goal of BSS is then to compute an estimate of the inverse
of the mixture matrix in order to extract from the signal
the independent components.

In the present paper we study the effect of having
sources with different “strengths” when performing BSS.
After giving a proper definition of the strength of a
source, the main purpose of our study is to relate the
strength of a source to its contribution to the informa-
tion conveyed by the processing system about the signal,
and to consider with more details the case where some of
the sources are very weak compared to the others. We
will show that in that case it is worthwhile to project the
data onto the space generated by the strong sources in
order to extract meaningful information and to avoid nu-
merical problems. The contributions to the (projected)
signal from the weak sources can then be considered as
noise terms added to the linear mixture of strong sources.
Since the sources are independent, this “noise” is thus in-
dependent of the “pure” signal (the part due to the strong
sources).

II. THE MODEL

We consider the information processing of a signal
which is a N-dimensionnal linear mixture of N inde-
pendent sources. At each time ¢ one observes S(t) =
{S;(t),s =1,..., N} which can be written in term of the
unknown sources s(t) = {sa(t),a =1,..., N} as:

N
S; = E Mo Sa,
a=1

where M = {Mjo,j=1,..,N,a=1,..., N} is the mix-
ture matrix assumed to be invertible. As it is well known,
and easily seen from the above equation, it is not pos-
sible to distinguish between the mixture of s with the
matrix M from the mixture of s’ = PDs with the ma-
trix M’ = MD~!P~! where D is an arbitrary diagonal
matrix with non zero diagonal elements, and P an arbi-
trary permutation of N indices. If we decide to consider
both normalized sources and normalized mixture matri-
ces, we are left with a diagonal matrix D which defines
the ”strengths” of the sources. More precisely we write

N

Sj=> Mjana sa, j=1,.,N. (2
a=1

assuming zero mean and unit variance for every source:

< 8o >=0, <sz>=1, a=1,.,N (3)
where < . > denotes the average with respect to the

(unknown) sources probability distributions,
p(s) = [] palsa), (4)

and with M the normalized mixture matrix. The normal-
ization can be chosen in different ways, and two of them
are of particular interest for what follows. The simplest
one is, for each «,
- N
MM =Y (M) =1 5
MM = (M) (5)

.
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The second one is a normalization on the inverse of the
mixture matrix:

= i([ﬁ‘l] P=1 (6

[M—IMT—I] |
o aj

.
-

Once a particular normalization, such as (5) or (6), is
chosen, the parameters 7, in (2) are well defined and can
be understood as the relative strengths of the sources.

The purpose of this investigation is to show that it is
worthwhile to project the data on the space generated
by the strong sources in order to extract meaningful in-
formation and to avoid numerical problems. The contri-
butions to the signal from the weak sources can then be
considered as noise terms added to the linear mixture of
strong sources.

III. INFORMATION CONTENT OF THE DATA

Let us now compute the amount of information con-
veyed by the data, S, about the sources, that is the mu-
tual information* I(S,s). To do so we consider



N
S; = Zﬁjanasa + vj,
a=1

where v = {vj,j =1, ..., N} is a vanishing additive noise,
<v;>=0,<vj vy >= b, with b — 0. Then I(S,s) is
a constant (that is a quantity that depends on b alone)
plus the data entropy. Since the mixture matrix is in-
vertible, we have

I(S,s) = cst.+ln|detﬁ|+21n7]a -

Y [ dhapalha)npalh) (®)

The last term in the above expression is the source en-
tropies. One should remember that the s’s are the nor-
malized sources, < s2 >= 1. This shows that each source
contributes to the information by a combination of its
strength and its entropy: the strength term favors strong
sources, whereas the entropy term favors the sources with
a p.d.f. close to Gaussian. The entropy of a source can-
not exceeds the one of a Gaussian with same variance,
that is

- /dhapa (ha)In po(hy) < éln 2me. (9)

Hence the information can be easily dominated by the
strength term, which is not bounded.

It is known that for performing BSS perfect knowledge
of the sources distribution is not necessary, and working
on the cumulants of order 2 and 3 or 4 is sufficient (see
e.g.51%). We can thus analyze the result (8) by making
a close-to-Gaussian approximation®1%, If we assume the
sources to have non zero third order cumulants,

A =< 83 >, (10)

we replace the source distribution p, by

A e="al? Se(s2 —3
puton) = (10 =)

The distribution p, has the same three first moments as
the true distribution p,'. Within this approximation the
mutual information (8) reads

— N
I(S,s) = cst. + In|detM| + Z]“%‘FE]"ZW@—
1 3 U2
Eza: <5t > (12)

From the above expression the most important source are
those for which the quantity
<s2>Z —Inn, (13)

is the smallest.

IV. CHARACTERIZATION FROM THE
INFOMAX PRINCIPLE

The Infomax criterion®° will allow us to get some more
insight onto the link between the sources strengths and
the amount of information that can be extracted from
the data.

We consider the information processing of the signal by
a nonlinear network, and we are interested in computing
the mutual information I(V,S) between the input S and
the output V.= {V;,i = 1,..., N} of the network. Since
the signal is a linear mixture the relevant architecture
is a linear processing followed by a (possibly) nonlinear
transfer function which may differ from neuron to neuron:

Vi=filhi) + v (14)
hi =Y Jij (S + vf), (15)

where v¢ = {VJ(-J,j =1,.,Ntand v ={y;,i = 1,..., N}
are additive input and output noise, respectively, with
<wo>=0,<v>=0,<vf v >=b"d; 1, <vi vy >=
b 6; 1. The J;; can be viewed as synaptic efficacies and
the h;’s as post-synaptic potentials (PSP). As explained
in the previous section, the noise has to be introduced in
order to have a finite mutual information, and we take
the limit 0 < b° << b << 1. For strictly zero input noise,
5% = 0, in the limit b6 — 0 the mutual information is up to
a constant equal to the output entropy. As shown in® its
maximization over the choice of both J and the transfer
functions f;’s leads to BSS. One can then derive practical
algorithms for performing BSS?. Tn this limit of 6% = 0
all the sources play the same role, that is the maximum of
the mutual information is independent of the individual
sources properties as well as of the mixture matrix. When
one takes into account a non zero input noise, then at
first non trivial order in % one sees that the input noise
introduces a scale witch breaks this invariance. More
precisely, at first order in % the mutual information can

be written (see® for details):

b0 & '
I(V,8S) = Ih(V,S) — %Zcii/dhiwi(hi)fiz (16)
i=1

where I(V,S) is the value at 6° = 0,

¥ (h)
TTiL, Fi(hi)

and % C;; 1s the variance of the noise on the PSP h;:

(18)

Finally, 4(h) is the probability distribution of h in-
duced by the sources input distribution, and ;(h;) the
marginal distribution of the PSP h;. At a given J, op-
timizing with respect to the choice of transfer functions
gives

Ih(V,S) = est. — /dh¢(h) In (17)

C,',' = [JJT]



bO
Filhe) = vs(ha) {1 + & Ca [<f > —9i(h)] } (19)
with < 1/)12 >= fdhﬂ/)z(hl)l/)g(hz) = fdhﬂ/)z(hl)a
We now optimize over J. At zeroth order the optimum
is reached for J = M~! (up to an arbitrary permutation),
so that we write

bO
WEJM:1N+?W1 (20)

where 1y is the N x N identity matrix. Expending the

mutual information at first order in % one finds that

there is no contribution from W' to this (O)rder. Hence
the mutual information at first order in % is given by
(16) at J =M™, with f/ given by (19) in which we set

; = pi. This gives

o N
I(V,S) = cst. — %ZCQQ /dsa[pa(sa)]:s (21)

with

Coa = [M™'MT71] (22)

oo
One sees that the term depending on M is what appears
in the normalization (6) of the mixture matrix. Hence
if we choose this particular normalization (6) in order to
define the strengths 7, of the sources, one can rewrite

L1 )
I(V.,S) = est. — — — 2
(V.8) = est. — 5> — <p> (23)

with < p2 >= [dsapa(ss)®. The above expression
shows how each source a contributes to the mutual in-
formation in term of its strength 7, and its pdf p,.

Within the close-to-Gaussian approximation (11) one
gets

U N
1
I(V,S) = est — TZ <53 >2 o (24)

a=1 @

Hence the sources which contribute the most to the con-
veyed information are those for which the quantity

Eu =< 53 2 (25)

§x~=| =

is the smallest. One should remember that 7, is given
by

& f: (m11,,)" (26)
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V. BSS WITH NOISY DATA

A standard approach in data processing consists in pro-
jecting the data onto the eigenspace associated with the
largest eigenvalues. In the present context of BSS) it is
reasonable to expect the space spanned by the strong
sources to be essentially the same as the one associated
to the largest principal components. It is the purpose of
this section to give a positive and more precise answer to
this question.

We consider the specific case where m source are
“strong”, while N — m sources are “weak”. More pre-
cisely, defining ¢ as a small parameter, ¢ << 1, we as-
sume

Na~0(1 =) fora=1,..,m
e~ O(e) fora=m+1,...,N. (27)

Let us now assume that we have preprocessed the data
by projecting it onto the m largest principal components.
Instead of the model (1) we have thus to consider the
model

m
Sj:ZMjasa + I/J(-], j=1,...,m
a=1

(28)

where M is now a m X m invertible mixture matrix, such
that MMT” has m non zero, of order 1 = ¢, eigenvalues.
The so’s (@ = 1, ..., m) are the sources of interest, and the
VJ(»]’S are additive noises, resulting from the weak sources,
as explained in the previous section. This noise vq =
{v},5 = 1,..,m} is uncorrelated with the m (strong)
sources, and of arbitrary distribution P(vg). Since we
are working in the small ¢ regime, all we will need is to

characterize this distribution by its first two cumulants:

<ve>=0
<wvovl >= ¢ B, (29)

where B is a (possibly non diagonal) m x m symmet-
ric matrix. The problem we are considering now is thus
strictly the same as the one of performing BSS on a linear
mixture of m sources corrupted by some additive input
noise, which, although small, cannot be neglected.

Let us now consider this noisy BSS problem within
the Infomax approach in the line of®. The network we
consider has the same architecture as the one defined in
(15), but with m inputs and outputs:

V; = fi(hi) + v (30)
h; = Z Jij (Sj + V.;]) 1= 17~~~)m: (31)
ji=1

with < v; vy >= b §; 5. The limit to be considered here
is the one of a vanishing output noise, b — 0, but at a
given input noise level:



0<b<< e (32)

Another important difference with the calculation done
in section TV, is that here we are interested in computing
the information conveyed about the global input, S 4+ v/,
and not about the ”pure” signal alone S. This is because
we have decided to call ”signal” the strong sources and
“noise” the weak sources, whereas in section IV the input
noise would correspond to some noise at the level of the
receptors.

In this limit of vanishing output noise, the mutual in-
formation I(V,S+wg) between the output and the input
of the network is up to a constant equal to the output en-
tropy. To simplify the analysis, we assume a full adapta-
tion of the transfer functions, which means?®, for J given,

fi(hi) = i(h

where ;(h;) is the marginal probability distribution of
the PSP h;. As a result, the mutual information is up to
a constant equal to the redundancy between the PSP’s®:

G
[TZ: i(hi)

In term of the sources distributions, the distribution
(h) is given by:

:/Hd5“ Po(Sa) /dmugP(uo)
IT é(hs = 321 MLia 56 Z iivj)  (35)

0

Since in (35) the noises v} are ~ O(¢) we can perform an

expansion, leading to the following expression:

Yh)y={1+ &> [IBIT],, 065 } v°(h), (36)

-
.0

i),i: 1,...,m, (33)

1(V,8) = Const — / d™hy(h)In (34)

where J; means the partial derivative with respect to h;,
and ¢/°(h) is the p.d.f. that would be obtained at ¢ = 0.

We consider now the maximization of the mutual in-
formation over the choice of J, taking into account that
€ is small. If € was strictly zero, we would be back to the
noiseless BSS problem for which the optimum is reached
for J = M~! (up to an arbitrary permutation). So for
nonzero € we write

W=IM=1,,+ W} (37)

where 1,, is the m x m identity matrix, and W1 a matrix
of order at least €. ¥ can then be written as

Hpor(ha)] {1- Z[lnpa]'z Wiﬁhﬁ -
o o s

Trw' 4+ ¢} (38)

and similarly, for the marginal distributions:

—-Wl +8)
(39)

@/)g(ha) = pa(he) {1 [Inpa]’ aah

The substitution of (35) in (34) gives for the mutual
information:

I(V,8) = I)(V,S) —

B 00
_{Z Bir [ b, ah/] ny® -

*y)
Zi:B“- / dh,-—ah? Inp;}. (40)

with ¢%(h) = []; ¥ (hi) = [1; pi(hi). The term I(V,S)
corresponds to the part of the mutual information which
does not take into account the “weak” sources. It is the
same as if one computes the mutual information between
the output V and the signal Ms; I(V, Ms).

It is easy to be shown that the two contributions of or-
der €2 cancel and that corrections due to the weak sources
appear in order ¢*. The last permits to work, up to high
approximation, using only the part corresponding to the
“strong” sources.

We tested the above analysis on a toy example by
considering the TCA of natural images performed in3.
First we reproduced the results in3. We then created
a new data base with artificially increased component
strengths: new images are computed as a linear mixture
of the previous ICA basis function but the strength of
20 components was augmented 100 times compared to
the other 124. We performed ICA in this new data base,
with the same algorithm based on Infomax®?3, but after
projecting the data onto the 20 largest prlnc1pa1 compo-
nents. We showed that the computational time within
this scheme is considerably decreased.

VI. CONCLUDING REMARKS

We have discussed the task of Blind Source Separation
in the case of a mixture of sources of unequal strengths.

We have presented different ways of defining the rel-
ative strengths of the sources. In particular, when non
zero input noise is taken into account the contribution of
a source to the conveyed information can be character-
ized by a criterion which combines the mixture matrix
elements and the third cumulant of the source distribu-
tion. This allows to define the strength of a source once a
proper normalization of the mixture matrix is assumed.

The analysis indicates also that, although arbitrary,
the assumed normalization of the mixture matrix may
have an important practical role in the analysis of the
outcome of an ICA, whenever one wants to extract the
“meaningful” sources. Which part of the signal is more
important is of course an application dependent notion.
Prior knowledge related to a given case should allow to
define the proper normalization from which the appropri-
ate scale of source strengths can be defined. Conversely
each chosen normalization implies a particular physical



interpretation which should be kept in mind when ana-
lyzing the outcome of an ICA.

We have considered with more details the particular
case of the information processing of a linear mixture of
independent sources when some of them are very weak as
compared to the other sources. One should note that in
such case the notion of strong versus weak is independent
of the mixture matrix normalization. It is easily seen that
the presence of weak sources leads to an almost singular
mixture matrix, and this manifests itself by the existence
of very small eigenvalues in the PCA analysis. We have
shown that it is relevant to project the input data onto
the largest principal components in order to extract the
strongest independent sources.

We illustrated this result on the TCA of the image data
base studied in3.
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